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Abstract

This PI was awarded the AFOSR grant ”Semi-supervised Discriminative Structured Prediction”
(Grant No.: FA9550-10-1-0335). The project was funded for the period of 08/01/10 to 07/31/13
with the total amount of $359,320. This report summarizes the progress made throughout the
project period.

1 Research Progress

The proposed research develops cutting-edge machine learning techniques to improve the performance
of a wide spectrum of robust and intelligent classification tasks. Structured prediction, one of four
major challenges in statistical machine learning, is a classification or regression problem with non-iid
data where the prediction variables are typically interdependent in complex ways with dependencies
encoded in a graphical model to capture the sequential, spatial, relational or recursive structure of
output variables. Semi-supervised learning, another example of the four major challenges in statistical
machine learning, is a technique which makes use of both unlabeled and labeled data for training —
typically a small amount of labeled data with a large amount of unlabeled data. Traditinal approaches
optimize surrogate functions of performance measures for structured prediction. In this project, we
propose to design novel machine learning algorithms that directly optimize performance measures for
classification and ranking problems and maximize various arbitrarily defined margins with the goal to
improve the generalization performance.

Consistent with the stated objectives of the project, the project has made considerable progress
along the following four directions. First, we have proposed a boosting method that directly minimizes
0-1 loss and maximizes variously targeted arbitrarily defined margins for binary classification. Second,
we have developed a semi-supervised boosting method that directly minimizes a combination of 0-1
loss over labeled examples and soft 0-1 loss over unlabeled examples, and maximizes various margins
over both labeled and unlabeled examples where the margin of an unlabeled example is defined to
be an expected soft margin. Third, we have proposed a boosting method that directly minimizes
0-1 loss and maximizes various margins for multiclass classification. Fourth, we have developed an
optimization method for linear models and a boosting method that builds boosted trees to directly
maximize performance measures for ranking.

The major findings along the above directions are described in more detail in the following four
subsections.

1.1 Direct Boost for Binary Classification

Let H = {h1, ..., hl} denote the set of all possible weak classifiers that can be produced by the weak
learning algorithm, where a weak classifier hj ∈ H is a mapping from an instance space X to Y =
{−1, 1}. The hjs are not assumed to be linearly independent, and H is closed under negation, i.e.,
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both h and −h belong to H. We define C of H as the set of mappings that can be generated by taking
a weighted average of classifiers from H:

C =







f : x →
∑

h∈H

αhh(x) | αh ≥ 0







, (1)

Given a set of training data D = {(x1, y1), · · · , (xn, yn)} independently drawn from an unknown
but fixed probability distribution p(X,Y ), we consider finding f ∈ C that minimizes the empirical
classification error in (2) and has a good generalization performance.

error(f,D) =
1

n

n
∑

i=1

1(ŷi 6= yi) (2)

where ŷi = arg maxy∈Y yf(xi) and 1(·) is the classification error function, i.e., an indicator function.
Due to the nonconvexity, nondifferentiability and discontinuity of the classification error function and
the max operation for ŷi, direct minimization of (2) seems impossible. In the following, we describe
novel methods that directly minimize (2) and maximize margins.

1.1.1 Minimizing 0-1 Loss

DirectBoost, we propose, works by sequentially running an iterative greedy coordinate descent algo-
rithm, and each time directly minimizes the true classification error (2) instead of a weighted classifica-
tion error in AdaBoost [6]. Consider the tth iteration, the ensembled classifier is ft(x) =

∑t
k=1 αkhk(x),

where previous t − 1 weak classifiers hk(x) and corresponding weights αk, k = 1, · · · , t − 1 have been
selected and determined. Denote a(xi) =

∑t−1
k=1 αkhk(xi), then the inference function for sample xi can

be written as,
Ft(xi, y) = y ht(xi)αt + ya(xi) (3)
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Figure 1: An example of computing minimum 0-1
loss of a weak learner over 4 samples.

We now describe the greedy coordinate descent al-
gorithm that sequentially minimizes a 0-1 loss, please
see the details in [25]. Since H is closed in negation,
we only care about these that are positive. We first
sort |a(xi)|, i = 1, · · · , n in an increasing order. Then
for a weak learner, we visit each sample in the order
that |a(xi)| is increasing, and we compute the slope
and the intercept of F (xi, yi) = yihk(xi)α + yia(xi).
Let êj = |a(xi)|. If the slope is positive and a(xi) is
positive, the sample margin is positive for αt > 0, thus
there is no error update on the righthand side of êj ;
if the slope is positive and the intercept is negative,
there is an error reduction on the righthand side of êj ;
if the slope is negative and the intercept is positive,
there is an error increment on the righthand side of êj ;
if the slope is negative and the intercept is negative,

the sample margin is always negative for αt > 0, thus there is no error update on the righthand side of
êj . We incrementally calculate the classification error on intervals of êjs, and choose the interval with
the minimum classification error. Consider an example with 4 samples. Suppose for a weak learner, we
have Ft(xi, yi), i = 1, 2, 3, 4 as shown in Figure 3. At αt = 0, samples x1 and x2 have negative margins,
thus they are misclassified, the error is 2 and the error rate is 50%. We incrementally update the
classification error on intervals of êi, i = 1, 2, 3, 4: For Ft(x1, y1), its slope is negative and its intercept
is negative, sample x1 always has a negative margin for αt > 0, thus there is no error update on the
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righthand side of ê1. For Ft(x2, y2), its slope is positive and its intercept is negative, then when αt is
at the right side of ê2, sample x2 has a positive margin and becomes correctly classified, so we update
the error by -1, the error rate is reduced to 25%. For Ft(x3, y3), its slope is negative and its intercept
is positive, then when αt is at the right side of ê3, sample x3 has a negative margin and becomes
misclassified, so we update error by 1, the error rate changes to 50% again. For Ft(x4, y4), its slope
is positive and its intercept is positive, sample x4 always has a positive margin for αt > 0, thus there
is no error update on the righthand side of ê4. We finally have the minimum error rate 25% on the
interval of [ê2, ê3].

We pick the weak learners, each having an interval with the largest classification error reduction.
Since the classification error is flat on the interval with a minimum classification error, we determine
the optimal weight of each selected weak learner by minimizing the exponential loss within the corre-
sponding interval. We only add the weak learner with the smallest exponential loss into the ensembled
classifier. We repeat this procedure until the training error reaches its minimum, which is 0 in a data
separable case. We then go to the next stage, explained below, that aims to maximize margins. A nice
property of the above greedy coordinate descent algorithm is that the classification error is monotoni-
cally decreasing, and its computational complexity is Θ(tMn) where M is the number of weak learners
considered by the weak learner algorithm at each round and is identical to the one in AdaBoost.

1.1.2 Maximizing Margins

The margins theory [15] provides an insightful analysis for the success of AdaBoost where the authors
proved that the generalization error of any ensemble classifiers is bounded in terms of the entire
distribution of margins of training examples, as well as the number of training examples and the
complexity of the base classifiers, and AdaBoost’s dynamics has a strong tendency to increase the
margins of training examples. This view motivates us to prove that the generalization error of any
ensemble classifiers is bounded in terms of the statistics of margins of training examples, as well as the
number of training examples and the complexity of the base classifiers, and propose a coordinate ascent
algorithm to directly maximize several types of margins just right after the training error reaches a
(local) minimum.

αt

b
b

b
b

0 d

s1

s2

s3
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s5

s6

Margin

p1 p2 p3 p4

Figure 2: Margin curves of six examples. At
points p1, p2, p3 and p4, the median example
is changed. At points p2 and p4, the set of
bottom n′ = 3 examples are changed.

The margin of a labeled example (xi, yi) with respect to
an ensembled classifier ft(x) =

∑t
k=1 αkhk(xi) is defined to

be

mi =
yi

∑t
k=1 αkhk(xi)
∑t

k=1 αk

(4)

We denote ai =
∑t−1

k=1 yiαkhk(xi), bi,t = yiht(xi) ∈ {−1,+1}
and c =

∑t−1
k=1 αk, then the margin on the ith example

(xi, yi) can be rewritten as mi =
ai+bi,tαt

c+αt
. The derivative of

the margin on ith example with respect to αt is calculated
as ∂mi

∂αt
=

bi,tc−ai

(c+αt)2
.

Since c ≥ ai, depending on the sign of bi,t, the derivative
of the margin on the ith sample (xi, yi) is either positive or
negative, which is irrelevant to the value of αt. This is also
true for the second derivative of the margin. Therefore,
the margin on the ith example (xi, yi) with respect to αt is
either concave when it is monotonically increasing or convex

when it is monotonically decreasing. See Figure 2 for a simple illustration.
Consider a greedy coordinate ascent algorithm maximizing the average margin over n′ worst training

examples, maverage n′ . Apparently maximizing the minimum margin is a special case by choosing n′ = 1.
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Figure 2 is a simple illustration with six training examples. Our aim is to maximize the average margin
over the bottom 3 examples. The interval [0, d] of αt indicates an interval where the training error is
zero. On the point of d, the sample s4 alters its margin from positive to negative, which causes the
training error to jump from 0 to 1/6. As shown in Figure 2, the margin of six training examples is
either monotonically increasing or decreasing.

We have designed an efficient greedy coordinate ascent algorithm that sequentially maximizes the
average margin of bottom n′ examples, see its details at [25]. We add the weak learner, which has the
largest increment of the average margin over bottom n′ examples, into the ensembled classifier. This
procedure terminates if there is no increment in the average margin over bottom n′ examples over all
weak learners.

ǫ-Relaxation: Unfortunately, there is a fundamental difficulty in the greedy coordinate ascent
algorithm that maximizes the average margin of bottom n′ samples: It gets stuck at a corner, a
coordinatewise maximum solution but not an optimal solution, from which it is impossible to make
progress along any coordinate direction. We propose an ǫ-relaxation method [2] to overcome this
difficulty. The main idea is to allow a single coordinate to change even if this worsens the margin
function. When a coordinate is changed, however, it is set to ǫ plus or ǫ minus the value that maximizes
the margin function along that coordinate, where ǫ is a positive number. If ǫ is small enough, the
algorithm can eventually approach a small neighborhood of the optimal solution.

We have also designed a similar greedy coordinate ascent algorithm to directly maximize the bottom
n′th sample margin.

1.1.3 Experimental Results

We evaluate the performance of DirectBoost on 10 UCI data sets and compare with those of Ad-
aBoost [6], LogitBoost [9], LPBoost with column generation [5] and BrownBoost [7]. For all the
algorithms in our comparison, we use decision trees with depth of either 1 or 3 as weak learners since
for the small datasets, decision stumps (tree depth of 1) is already strong enough. DirectBoost with
decision trees is implemented by a greedy top-down recursive partition algorithm to find the tree but
differently from AdaBoost and LPBoost, since DirectBoost does not maintain a distribution over train-
ing samples. Instead, for each splitting node, DirectBoost simply chooses the attribute to split on by
minimizing 0-1 loss or maximizing the predefined margin value. In all the experiments that ǫ-relaxation
is used, the value of ǫ is 0.01.

Datasets N D depth AdaBoost LogitBoost LPBoost BrownBoost DirectBoostavg DirectBoostǫ
avg DirectBoostorder

Tic-tac-toe 958 9 3 1.47(0.7) 1.47(1.0) 2.62(0.8) 3.66(1.3) 0.63(0.4) 1.15(0.8) 1.05(0.4)

Diabetes 768 8 3 27.71(1.7) 27.32(1.3) 26.01(3.3) 26.67(2.6) 25.62(2.5) 25.49(3.0) 23.4(3.7)

Australian 690 14 3 14.2(1.8) 16.23(2.6) 14.49(4.4) 13.77(4.6) 14.06(3.6) 13.33(3.0) 13.48(2.9)

Fourclass 862 2 3 1.86(1.3) 2.44(1.6) 3.02(2.3) 2.33(1.7) 2.33(1.0) 1.86(1.3) 1.74(1.5)

Ionosphere 351 34 3 9.71(3.7) 9.71(3.1) 8.57(2.7) 10.86(2.8) 7.71(3.0) 8.29(2.7) 7.71(4.4)

Splice 1000 61 3 5.3(1.4) 5.3(2.6) 4.8(1.4) 6.1(1.1) 4.8(0.7) 4.0(0.5) 6.7(1.6)

Cancer-wdbc 569 29 1 4.25(2.5) 4.42(1.4) 3.89(1.5) 4.25(2.2) 4.96(3.0) 4.07(2.0) 3.72(2.9)

Cancer-wpbc 198 32 1 27.69(7.6) 30.26(7.3) 26.15(10.5) 28.72(8.4) 27.69(8.1) 24.62(7.6) 27.18(10.0)

Heart 270 13 1 17.41(7.7) 18.52(5.1) 19.26(8.1) 18.15(7.2) 18.15(5.1) 16.67(7.5) 18.15(7.6)

Adult 6414 14 3 15.6(0.7) 15.39(0.8) 16.2(1.1) 15.56(0.9) 16.25(1.7) 15.28(0.8) 15.8(1.1)

Table 1: Percent test errors of AdaBoost, LogitBoost, soft margin LPBoost with column generation, Brown-
Boost, and three DirectBoost methods on 10 UCI datasets each with N samples and D variables.

We partition each UCI dataset into five parts with the same number of samples for five-fold cross
validation. In each fold, we use three parts for training, one part for validation, and the remaining part
for testing. The validation set is used to choose the optimal model for each algorithm: For AdaBoost
and LogitBoost, the validation data is used to perform early stopping since there is no nature stopping
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criteria for these algorithms. We run the algorithms until convergence where the stopping criterion is
that the change of loss is less than 1e-6, and then choose the ensemble classifier from the round with
minimum error on the validation data. For BrownBoost, we select the optimal cutoff parameter by the
validation set, and The cutoff parameters for BrownBoost are chosen from {0.0001, 0.001, 0.01, 0.03,
0.05, 0.08, 0.1, 0.14, 0.17, 0.2}. LPBoost maximizes the soft margin subject to linear constraints, its
objective is equivalent to the average margin of bottom n′ samples [19], thus we set the same candidate
parameters n′/n = {0.01, 0.05, 0.1, 0.2, 0.5, 0.8} for them. For LPBoost, the termination rule we use is
same to the one in [5], and we select the optimal regularization parameter by the validation set. For
DirectBoost, the algorithm terminates when there is no increment in the targeted margin value, and
we select the model with the optimal n′ by the validation set.

We use DirectBoostavg to denote our method that runs Algorithm 1 first and then maximizes the
average of bottom n′ margins without ǫ-relaxation, DirectBoostǫavg to denote our method that runs
Algorithm 1 first and then maximizes the average margin of bottom n′ samples with ǫ-relaxation, and
DirectBoostorder to denote our method that runs Algorithm 1 first and then maximizes the bottom n′th
margin with ǫ-relaxation. The means and standard deviations of test errors are given in Table 1. Clearly
DirectBoostavg , DirectBoostǫavg and DirectBoostorder outperform other boosting algorithms in general,
specially DirectBoostǫavg is consistently better than AdaBoost, LogitBoost, LPBoost and BrownBoost
over all data sets except Cancer-wdbc. Among the family of DirectBoost algorithms, DirectBoostavg

wins on two datasets where it searches the optimal margin solution in the region of zero training
error, this means that keeping the training error at zero may lead to good performance in some cases.
DirectBoostorder wins on three other datasets, but its results are unstable and sensitive to n′. With
ǫ-relaxation, DirectBoostǫavg searches the optimal margin solution in the whole parameter space and
gives the best performance on the remaining 5 data sets. It is well known that AdaBoost performs
well on the datasets with a small test error such as Tic-tac-toe and Fourclass, it is extremely hard for
other boosting algorithms to beat AdaBoost. Nevertheless, DirectBoost is still able to give even better
results in this case. For example, on Tic-tac-toe data set, the test error becomes 0.63%, more than half
the error rate reduction. Our method would be more valuable for those who value prediction accuracy,
which might be the case in areas of medical and genetic research.

# of iterations Total running times

AdaBoost 117852 31168

LPBoost 286 167520

DirectBoostǫavg 1737 606

Table 2: Number of iterations and total run times (in sec-
onds) in training stage on Adult dataset with 10000 training
samples and the depth of DecisionTrees is 3.

Table 2 shows the number of iterations and
total run times (in seconds) for AdaBoost, LP-
Boost and DirectBoostǫavg at the training stage,
where we use the Adult dataset with 10000 train-
ing samples. All these three algorithms employ
decision trees with a depth of 3 as weak learn-
ers. The experiments are conducted on a PC with
Core2 Duo 2.6GHz CPU and 2G RAM. Clearly
DirectBoostǫavg takes less time for the entire training stage since it converges much faster. LPBoost
converges in less than three hundred rounds, but as a total corrective algorithm, it has a greater com-
putational cost on each round. To handle large scale data sets in practice, similar to AdaBoost, we
can use many tricks. For example, we can partition the data into many parts and use distributed
algorithms to select the weak learner.

We also have conducted experiments to evaluate the noise robustness. we find that DirectBoostorder

has an impressive noise tolerance property.
Please see [25] for more technical detail and experimental results.

1.2 Direct Boost for Semi-supervised Classification

Consider semi-supervised binary classification, assume we are given not only a set of n labeled examples,
Dl = {(x1, y1), · · · , (xn, yn)} but also a set of m unlabeled examples, Du = {xn+1, · · · , xn+m}. Just as
in supervised learning case for boosting, the goal here is that using the combined set of labeled and
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unlabeled examples Dl ∪Du to construct an ensemble classifier f ∈ C that minimizes the following 0-1
loss and has good generalization performance.

error(f,Dl ∪Du) =
n

∑

i=1

1(yif(xi) ≤ 0) + γ ·
n+m
∑

i=n+1

∑

y∈Y

p(y|xi)1(yf(xi) ≤ 0) (5)

Here the first term denotes the classification error for labeled data, and the second term represents soft
classification error for unlabeled data, p(y|xi) = 1

1+e−yf(xi)
and γ is a trade-off parameter that controls

the influence of the unlabeled data. The minimum entropy and variance semi-supervised boosting
methods [26, 29] optimize the surrogates (log-loss and negative sigmoid function) of (5).

1.2.1 Minimizing 0-1 Loss

In semi-supervised case, DirectBoost first runs the algorithm in section 1.1.1 that minimizes the 0-1
loss over labeled data Dl to construct a good initial enssembled classifier, we then run use an iterative
greedy coordinate descent algorithm that directly minimizes (5), and estimate p(y|xi) through an iter-
ative scheme. That is, given an estimate p̂0(y|xi), (5) yields an ensemble classifier f1(xi), which leads
to a new estimate p̂1(y|xi) through Algorithm 1 below. The p̂1(y|xi) is expected to be more accurate
than p̂0(y|xi) for p(y|xi) because additional information from labeled and unlabeled data has been used
in constructing of f1(xi) through p̂0(y|xi). Consider the tth iteration, the ensemble classifier is ft(x) =
∑t

k=1 αkhk(x), where previous t−1 weak classifiers hk(x) and corresponding weights αk, k = 1, · · · , t−1
have been selected and determined. We estimate p(y|xi) by the logit function of the ensemble classifier of
the previous step, p̂(y|xi) = 1

1+exp(yft−1(xi))
. Then the combined 0-1 loss (5) to be a stepwise function of

αt.

Ft(x3, ŷ3)
Ft(x2, y2)

Ft(x1, y1)

αt

αt

0

0 e3 e1 e2

combined 0-1 loss

Figure 3: An example of computing mini-
mum combined 0-1 loss for a weak learner ht

over 2 labeled samples (x1, y1) and (x2, y2),
and 1 unlabeled sample x3.

Denote a(xi) =
∑t−1

k=1 αkhk(xi), then the inference func-
tion for sample xi can be written as,

Ft(xi, y) = y ht(xi)αt + ya(xi) (6)

which is a linear function with respect to αt with slope
yht(xi) and intercept ya(xi). For a labeled example
(xi, yi) ∈ Dl, the inference function Ft(xi, yi) > 0 denotes
this example is correctly classified; otherwise, it is misclassi-
fied. These two states exchange at point αt = − a(xi)

ht(xi)
, which

is denoted as the critical point ei, the value of the combined
0-1 loss (5) has 1

n
difference at ei. For example, in Figure 3,

Ft(x1, y1) changes its sign from negative to positive at e1,
then (x1, y1) ∈ Dl is correctly classified at αt > e1 and (5)
has 1

n
reduction on the right side of e1. Ft(x2, y2) changes

its sign from positive to negative at e2, then (x2, y2) ∈ Dl

becomes misclassified at αt > e2 and (5) has 1
n

increment on
the right side of e2. To compute the error of unlabeled ex-
amples, we use ŷi = sign(a(xi)) to denote the pseudo label

of an unlabeled example xi ∈ Du. Then, similarly, the sign of Ft(xi, ŷi) denotes xi ∈ Du is “correctly

classified” or “misclassified”. Again, the critical point for xi ∈ Du is αt = ei = − a(xi)
ht(xi)

, and the value

of the combined 0-1 loss (5) has γ |p̂(+1|xi)−p̂(−1|xi)|
m

difference at ei. In Figure 3, Ft(x3, ŷ3) changes its

sign from positive to negative at e3, and (5) has γ |p̂(+1|x3)−p̂(−1|x3)|
m

increment on the right side of e3. It
is obviously that the intercept is always positive for an unlabeled example xi ∈ Du. The critical points
ei = − a(xi)

ht(xi)
, i = 1, · · · , n + m divide αt into (at most) n + m + 1 intervals, each interval has the value

of a combined 0-1 loss (5).
Thus we can design a greedy coordinate descent algorithm that sequentially minimizes (5) [27].
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1.2.2 Maximizing Margins

Similar to the supervised case, we now describe the algorithm to directly maximize various margins
over both labeled and unlabeled examples. The margin of a labeled example (xi, yi) ∈ Dl w.r.t. an
ensemble classifier ft(xi) is defined to be

ϕl
i =

yift(xi)
∑t

k=1 αk

(7)

where ϕl
i can be interpreted as a measure of how confident this labeled example is correctly classified.

For an unlabeled example xi ∈ Du, we define its margin w.r.t an ensemble classifier ft(x) as

ϕu
i =

∑

y∈Y

p(y|xi)
yft(xi)

∑t

k=1 αk

= (2p(y = 1|xi) − 1)
ft(xi)

∑t

k=1 αk

(8)

We can sort ϕl
i and ϕu

i in an increasing order respectively, and consider n′ worst labeled examples
n′ ≤ n and m′ worst unlabeled examples m′ ≤ m that have smaller margins, then the combined
average margin over those examples is

ϕavg(n′,m′) =
1

n′

∑

i∈Bl

n′

ϕl
i + γ

1

m′

∑

i∈Bu

m′

ϕu
i (9)

where Bl
n′ denotes the set of n′ labeled examples having the smallest margins and Bu

m′ denotes the set of
m′ unlabeled examples having the smallest margins, and again γ is a trade-off parameter that controls
the influence of the unlabeled data. n′ indicates how much we relax the hard margin on unlabeled
examples, and we set n′ based on knowledge of the number of noisy examples in Dl [?]. The higher the
noise rate, the larger the n′ should be used. m′ controls the relaxation of the margin distribution over
the unlabeled data. A smaller m′ makes the algorithm focus more on the unlabeled examples close to
the decision boundary. In this section, we consider (9) as our objective.

0

0

0 αt

αt

αt

dq1 q2 q3 q4

labeled examples

unlabeled examples

ϕ
l
4

ϕ
l
3

ϕ
l
2

ϕ
l
1

ϕ
u
4

ϕ
u
3

ϕ
u
2

ϕ
u
1

ϕavg(n′=2,m′=2)

b
b

b b

Figure 4: An example of computing
αt that maximizes ϕ̂avg(n′=2,m′=2)

For an unlabeled example xi ∈ Du, if we let p(y|xi) =
1

1+e−yft−1(xi)−αtyht(xi)
, then ϕu

i is a complex function of αt. Again

use p̂(y|xi) = 1

1+eyft−1(xi)
instead to estimate the conditional proba-

bility by the previous step. Denote ŷi = 2

1+e−(ft−1(xi))
− 1, then the

estimated margin for xi ∈ Du is denoted to be

ϕ̂u
i = ŷi

ft−1(xi) + αtht(xi)
∑t−1

k=1 αk + αt

, (10)

For a given weak hypothesis, we then find αt maximize (11) instead

ϕ̂avg(n′,m′) =
1

n′

∑

i∈Bl

n′

ϕl
i + γ

1

m′

∑

i∈Bu

m′

ϕ̂u
i (11)

It can be shown that (11) is a quasiconcave function for a given weak
hypothesis. This property allows us to design an efficient algorithm
that maximizes (11) efficiently.

The iterative greedy coordinate ascent algorithm that sequen-
tailly and approximately maximizes (9) can be designed, where at
each iteration, update p̂(y|xi), We add the weak hypothesis, which
has the largest increment of ϕ̂avg(n′,m′), into the ensemble classifier,

with the weight that leads to maximum (11). The stopping criterion is that if there is no increment in
ϕ̂avg(n′,m′) over all weak hypotheses, then the algorithm achieves a stationary point.

Since ϕ̂avg(n′,m′) is non-differentiable, a fundamental difficulty in the greedy coordinate ascent algo-
rithm proposed above is that: the algorithm gets stuck at a corner from which it is impossible to make
progress along any coordinate direction. To overcome this difficulty, we employ an ǫ-relaxation method.
The main idea is to allow a single coordinate to change even if this worsens the margin function. When
a coordinate is changed, however, it is set to ǫ plus or ǫ minus the value that maximizes the margin
function along that coordinate, where ǫ is a positive number.
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1.2.3 Experimental Results

We compare the performance of SSDirectBoost with those of AdaBoost, DirectBoost, ASSEMBLE [1],
and EntropyBoost [29] on UCI datasets. Since we concentrate on the case that the labeled data
are limited while the unlabeled data are adequate in the training process, we randomly select a small
portion of data as the labeled training examples, the remaining examples are used as unlabeled training
data, validation data and testing data. The dimension of data and the number of separate labeled (L),
unlabeled (U), validation (V), and test (T) examples for each dataset are given in Table 3. We use the
validation data to choose the optimal model for each algorithm. For AdaBoost, the validation data is
used to perform early stopping. We run AdaBoost until convergence where the stopping criterion is
that the change of loss is less than 1e-6, and then choose the ensemble classifier from the round with
minimum error on the validation data. The early stopping technique is applied on ASSEMBLE, and
EntropyBoost since there is no nature stopping criteria. Moreover, for ASSEMBLE and EntropyBoost,
the tradeoff parameters that control the influence of unlabeled data are chosen by the validation set
on the values {1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001}. For DirectBoost, the parameter n′ is chosen by the
validation data on the values {1, n/5, n/3, n/2}. For SSDirectBoost, the parameter n′ is chosen on the
values {1, n/5, n/3, n/2} and m′ is chosen on the values {1,m/3,m/2} by the validation set, and γ is
set to 0.1. The stopping criterion of SSDirectBoost is defined as line 12 in Algorithm 2, SSDirectBoost
terminates at the margin maximization solution, thus we need not apply early stopping on validation
data.

Data Dim.
No. of examples

Depth AdaBoost DirectBoost ASSEMBLE EntropyBoost SSDirectBoost
L U V T

Mushroom 22 20 1000 50 7054 1 8.81(1.9) 5.38(1.8) 5.05(0.7) 5.1(1.6) 2.2(0.5)

Adult 14 50 1000 50 47742 1 20.33(2.0) 20.14(1.9) 19.77(1.8) 20.53(2.2) 19.9(2.0)

Australian 14 50 300 40 300 1 15.67(1.1) 15.0(0.5) 14.73(1.1) 14.73(0.9) 13.67(0.9)

Liver 6 30 200 115 200 1 41.5(4.3) 41.1(5.9) 36.9(5.7) 37.2(5.2) 36.3(5.3)

Sonar 60 20 100 88 100 1 33.8(3.8) 33.6(4.7) 31.8(5.1) 35.4(4.4) 28.0(2.5)

Kr-vs-Kp 36 50 1000 50 2096 1 10.46(2.2) 8.66(2.4) 8.2(2.2) 8.5(2.1) 7.65(2.0)

Cod-Rna 7 50 1000 50 58435 3 17.33(2.4) 16.71(2.6) 18.87(2.7) 19.6(3.0) 14.44(1.8)

Splice 61 100 400 100 400 3 13.32(1.0) 12.96(2.2) 14.12(2.0) 14.04(1.1) 10.72(2.1)

Magic 100 100 1000 100 17820 3 20.6(2.0) 19.72(1.3) 19.87(1.3) 20.8(1.2) 19.51(1.1)

Spambase 57 100 1000 100 3401 3 10.2(1.5) 11.0(1.0) 10.55(0.8) 10.45(1.0) 8.96(0.9)

Table 3: Mean error rates (in %) and standard deviation of each boosting method on UCI datasets when decision trees
(with depth of 1 or 3) are used as weak learners.

Table 3 shows the results of different boosting methods when decision trees (with depth of 1 or
3) are used as weak learners. As we expected, semi-supervised boosting algorithms outperform the
supervised methods, the results indicate that the unlabeled data does help to improve generalization
performance. Furthermore, the proposed SSDirectBoost overcomes the gradient based semi-supervised
boosting methods in general by taking advantage of maximizing the margin objective function di-
rectly on Dl ∪ Du. When decision trees with depth of three are used, we noticed that ASSEMBLE
and EntropyBoost sometimes perform worse than supervised boosting algorithms, but our proposed
SSDirectBoost consistently gives significantly better results in this case.

Please see [27] for more technical detail and experimental results.

1.3 Direct Boost for Multi-class Classification

In multi-class classification, we want to predict the labels of examples lying in some set X . We are
provided a training set of labeled examples D = (x1, y1), · · · , (xn, yn)}, where each example xi ∈ X has
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a unique yi label in the set {1, · · · ,K}. Again denote H = {h1, ..., hl} as the set of all possible weak
classifiers that can be produced by the weak learning algorithm, where a weak classifier hj ∈ H is a
mapping from an instance space X to Y = {1, · · · ,K}. Boosting combines weak classifiers to form a
highly accurate combined classifier for multiclass classification by making a prediction according to the
weighted plurality vote of the classifiers:

ŷ = arg maxy∈{1,···,K}f(x, y), (12)

where f(x, y) =
∑

h∈H αh1(h(x) = y), αh ∈ R. The empirical error for a multi-class classification
problem is given by (2). Our goal is to find f = (f(x, y), y ∈ Y) that attains a small empirical error
on D and also generalizes well. In the following, we describe novel methods that directly minimize (2)
and maximize various margins.

1.3.1 Minimizing 0-1 Loss

Similar to the binary classification, we use a greedy coordinate descent algorithm to directly minimize
the empirical error (2) and construct an ensembled classifier. Consider the tth iteration, the ensemble
classifier is ft(x, y) =

∑t
k=1 αk1(hk(x) = y), ∀y ∈ Y, where previous t − 1 weak classifiers hk(x)

and corresponding weights αk, k = 1, · · · , t − 1 have been selected and determined. Let a(xi, y) =
∑t−1

k=1 αk1(hk(x) = y). We define the inference functions for example xi as

Ft(xi, y) = ft(xi, y) = a(xi, y) + αt1(ht(x) = y), (13)

which is a linear function of αt with intercept a(xi, y) and slope 1(hk(x) = y). Obviously, the inference
function is either a line with slope 1 or a horizontal line. The inference functions are used to compute
the empirical error (2). More specifically, given a weak learner ht ∈ H, for each example pair (xi, yi),
there are 3 scenarios to compute the empirical error, see Figure 5. Scenario 1 is the case that ht(xi) = yi.
Ft(xi, yi) is a line with slope 1, and assume that l = arg maxy∈Y ,y 6=yi

a(xi, y), then Ft(xi, l) is a line
with slope 0. The intersection of Ft(xi, yi) and Ft(xi, l) is at αt = a(xi, l) − a(xi, yi). Thus when αt

is set on the left side of the intersection point, there is an error for example xi and otherwise there is
no error. Scenario 2 is the case that ht(xi) = y, y 6= yi, and a(xi, yi) > a(xi, y) ∀y ∈ Y, y 6= yi. Then
Ft(xi, y) is a line with slope 1, and Ft(xi, yi) is a line with slope 0. The intersection point of Ft(xi, y)
and Ft(xi, yi) is at αt = a(xi, y) − a(xi, yi). Thus when αt is set on the right side of the intersection
point, there is an error for example xi and otherwise there is no error. Scenario 3 is the case that
ht(xi) = y, and y 6= yi, and ∃l ∈ Y, l 6= yi such that a(xi, l) > a(xi, yi), in this case there is always an
error no matter what value αt is.

0

(1)

l

ht(xi) = yi

αt
0

(2)

yi

ht(xi) = y

αt
0

(3)

l

ht(xi) = y

αt

yi

q q

Figure 5: Three scenarios to compute the empirical error of a weak learner ht over an example pair (xi, yi),
where l denotes the incorrect label with highest score, and p denotes the intersection point that results empirical
error change. The red, bold line for each scenario represents the inference function of example xi and its true
label yi.
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1.3.2 Maximizing Margins

Similar to binary classification, we now describe the algorithm that directly maximizes various mar-
gins for multi-class classification. Define the margin of a labeled example (xi, yi) with respect to an
ensembled multi-class classifier ft(x, y) =

∑t
k=1 αk1(hk(xi) = y),∀y ∈ Y to be

mi =
ft(x, yi)

αl1

− max
y∈Y ,y 6=y1

ft(x, y)

αl1

(14)

We can sort mi in an increasing order, and consider n′ worst training examples n′ ≤ n that have smaller
margins, then define the average margin over those n′ labeled examples by gavg n′ . Formally,

gavg n′ =
1

n′

∑

i∈Bn′

mi (15)

where Bn′ denotes the set of n′ labeled examples having the smallest margins.
We have designed an algorithm to maximize (15). Given a weak learner ht ∈ H at tth iteration, let

c =
∑t−1

k=1 |αk|, then the margin on the example (xi, yi) can be rewritten as,

mi =
a(xi, yi) + αt1(ht(xi) = yi)

c + |αt|
− max

y∈Y ,y 6=yi

a(xi, y) + αt1(ht(xi) = y)

c + |αt|
(16)

Consider the case that αt ≥ 0. For each example pair (xi, yi), there are three scenarios of
(16) to consider, as shown in Figure 6. Scenario 1 is the case that ht(xi) = yi, and assume that

l = arg maxy∈Y ,y 6=yi
a(xi, y), then mi = a(xi,yi)−a(xi,l)+αt

c+αt
. This corresponds to the curve which is mono-

tonically increasing in Figure 6. Scenario 2 is the case that ht(xi) = l, y 6= yi, and a(xi, l) > a(xi, y),

∀y ∈ Y, y 6= yi, then mi = a(xi,yi)−a(xi,l)−αt

c+αt
. This corresponds to the curve which is monotonically

decreasing in Figure 6. Scenario 3 is the case that ht(xi) = y, and y 6= yi, and ∃l ∈ Y, l 6= yi such that
a(xi, l) > a(xi, y), in this case the margin curve of mi has two pieces. When αt < a(xi, y) − a(xi, l),

mi = a(xi,yi)−a(xi,l)
c+αt

and when αt > a(xi, y)−a(xi, l), mi = a(xi,yi)−a(xi,y)−αt

c+αt
. The scenarios for the case

that αt < 0 can be similarly identified.

0

(1)

ht(xi) = yi

αt
0

(2)

ht(xi) = l

αt
0

(3)

ht(xi) = y

αt

Figure 6: Three scenarios of margin curve of a weak learner ht over an example pair (xi, yi).

Thus in the margin maximization phase, the key step is to find the value of αt within an interval
[0, d] that maximize (15) for a given ht. Finding the exact solution is computationally difficult since
the examples in Scenario 3 can either intersect with the examples in Scenario 1 or intersect with the
examples in Scenario 2. Fortunately, we can prove that (15) is quasi-concave, which allows us to
design a line search algorithm that maximizes (15) efficiently by checking the derivative of (15). We
have designed a greedy coordinate ascent algorithm that sequentially maximizes the average margin
of bottom n′ examples, it terminates if there is no increment in the average margin over bottom
n′ examples over ht. Again since (15) is non-differentiable at turning points, the coordinate ascent
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algorithm may get stuck at a corner from which it is impossible to make progress along any coordinate
direction. To overcome this difficulty, we use an ǫ-relaxation method, which allows a single coordinate
to change even if this worsens the objective value. When a coordinate is changed, it is set to ǫ plus
(or ǫ minus) the value that maximizes the objective function along that coordinate, where ǫ is a small
positive number. If ǫ is small enough, the algorithm can eventually approach a small neighborhood of
the optimal solution.

1.3.3 Experimental Results

To evaluate the performance of the MCDB algorithm, we conduct experiments with 12 UCI datasets.
For comparison, we also report the results of AdaBoost.M1 [6], AdaBoost.MH [16], SAMME [30], and
GD-MCBoost [14]. All these algorithms use multi-class base classifiers except AdaBoost.MH, which
reduces the multi-class problem to a set of binary classification problems. The classification error is
estimated either by a test error or five-fold cross-validation. The datasets come with pre-specified
training and testing sets are evaluated by test error, where n′ is set to n

4 for MCDB and the number
of rounds is set to maximum of 5000 for each method. For datasets which are evaluated by cross-
validation, we partition them into five parts evenly for 5-fold. In each fold, we use three parts for
training, one part for validation, and the remaining part for testing. We use the validation data to
choose the optimal model for each algorithm. For AdaBoost.M1, AdaBoost.MH, SAMME, and GD-
MCBoost, the validation data is used to perform early stopping. We run these algorithms with a
maximum of 5000 iterations, and then choose the ensemble classifier from the round with minimum
error on the validation data. For MCDB, the parameter n′ is chosen on the values {1, n

10 , n
5 , n

4 , n
3 , n

2 , 2n
3 }

by the validation set. The stopping criterion of MCDB is defined as line 8 in Algorithm 3 where MCDB
terminates at the margin maximization solution, thus we need not to apply early stopping. In all the
experiments, the value of ǫ is set to be 0.01 and the value of th is set to be 1e-5.

Data # Examples K # Variables Error Estimation

Abalone 4177 28 8 5-CV
Car 1728 4 6 5-CV

Krkopt 28056 18 6 5-CV
Letter 20000 26 16 5-CV

Nursery 12960 5 8 5-CV
Poker525k 525010/500000 10 11 test error

Segmentation 210/2100 7 19 test error
Waveform 5000 3 21 5-CV

Yeast 1484 10 8 5-CV
Glass 214 6 10 5-CV
Wine 178 3 13 5-CV
Vowel 990 11 10 5-CV

Table 4: Description of datasets

An overview of these datasets is shown in Ta-
ble 4. In the # Examples column, the number
of training/test examples are listed for datasets
coming with pre-specified training and testing
sets, and the entire number of examples are given
for the rest datasets. The original Poker dataset
has 25,010 training examples and 1,000,000 exam-
ples for testing. Since the test data is very large,
we randomly divide it equally into two parts, and
add them to training and testing sets respectively,
thus its training size becomes 525,010 and test
size becomes 500,000.

First, we restrict the base classifiers to smaller
trees to test the performance of each algorithm when the base classifiers are very weak. We exclude
the results of AdaBoost.MH as all the rest algorithms use multi-class base classifiers, and we want to
compare the performance of each algorithm with the same hypothesis space H. Table 5 shows the
results of different methods when multi-class decision trees with a depth of 3 are used as weak learners.
With smaller trees, MCDB gives the best results on all datasets indicating that MCDB only requires
very weak base classifiers even if there is no exact weak learner condition for MCDB. GD-MCBoost
achieves the second best accuracy, and this algorithm also requires weaker base classifiers since it is
able to boost any type of weak learners with non-zero directional derivatives [14]. We do not report its
results on Poker525k dataset since its one iteration takes more than 12 hours to run by authors’ matlab
code. For SAMME, the weak learner conditions can be satisfied easily, but it couldn’t drive down the
training error when the base classifier is very weak, and its performance is much worse. AdaBoost.M1
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gives the worst results, and it is not able to boost the base classifiers for 4 of 12 datasets, as shown in
Table 5.

Figure 7: Learning curves on training data, test data by Algorithm 1 and 3 respectively.

Data AdaBoost.M1 SAMME GD-MCBoost MCDB

Abalone - 74.20(1.8) 74.62(1.5) 74.03(2.0)
Car 10.96(2.5) 4.75(1.0) 3.60(1.1) 2.78(0.8)

Krkopt - 64.33(0.9) 26.55(0.4) 22.76(0.7)
Letter - 24.94(0.9) 5.40(1.3) 4.89(0.3)

Nursery 9.70(1.5) 3.26(0.7) 0.2(0.0) 0.02(0.0)
Poker525k 49.16 69.09 - 30.09

Segmentation 8.29 6.43 6.0 5.1
Waveform 17.8(1.2) 16.96(1.2) 16.2(1.1) 14.38(1.1)

Yeast 43.65(2.6) 44.73(4.5) 43.6(3.5) 42.43(2.8)
glass 29.52(10.7) 31.9(8.0) 27.0(7.4) 26.19(10.8)
wine 8.57(4.9) 7.43(4.8) 7.54(5.3) 3.43(4.7)
vowel - 19.19(2.6) 9.2(2.6) 5.66(1.9)

Table 5: Test error (and standard deviation) of multi-class boosting methods on UCI datasets, using
decision trees with a depth of 3.

With the same hypothesis space H (trees with a depth of 3), Algorithm 1 usually achieves a lower
training classification error rate. The left panel of Figure 7 shows a typical training error curve on car
dataset, and the middle panel shows the corresponding test error curve. Once Algorithm 1 terminates
at a coordinatewise local minimum, Algorithm 3 can still drive down the test error even when the
training error does not decrease, as shown in the right panel of Figure 7.

We next investigate how these algorithms perform with more powerful base classifiers. We tried all
tree depths in the candidate set {3,5,8,12} for each dataset. This time we compare the algorithms not
restricted in the same hypothesis space H, so we also add AdaBoost.MH in the comparison. As shown
in Table 6, among all the methods, MCDB gives the most accurate results in 9 of the 12 datasets, and
its results are close to the best results produced by other methods for the remaining 3 datasets.

Please see [28] for more technical detail and experimental results.

1.4 Direct Optimization for Ranking

First we describe DirectRank that learns a linear ranking function by directly optimizing any ranking
measures. Suppose that a set of training queries Qs = {q1, q2, · · · qn} is given, and a set of documents
di= {di1 , di2 , · · · , di ,m(qi )} is retrieved for each query qi. Let m(qi) denote the size of the set of retrieved
documents, which varies for different queries. Every document dij is associated with a manually-labeled
judgment yij ∈ {r1, r2, · · · , rl}, that denotes the relevance of a document to the query. We define the
order rl ≻ rl−1 ≻ · · · ≻ r2 ≻ r1, where ≻ means the preference relationship. A L-dimensional feature
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Data AdaBoost.M1 AdaBoost.MH SAMME GD-MCBoost MCDB

Abalone 76.41(1.4) 75.33(1.2) 73.70(1.7) 74.62(1.5) 73.44(1.8)
Car 3.36(0.8) 2.84(0.6) 3.65(0.9) 2.8(0.8) 2.67(0.8)

Krkopt 14.3(0.3) 11.68(0.3) 12.71(0.2) 12.20(0.3) 11.04(0.2)
Letter 3.48(0.3) 3.1(0.1) 4.88(0.3) 3.37(0.2) 3.1(0.2)

Nursery 0.12(0.1) 0.03(0.0) 0.16(0.1) 0.0(0.0) 0.0(0.0)
Poker525k 30.19 2.01 18.74 - 2.77

Segmentation 4.86 6.14 5.1 6.0 4.52
Waveform 15.2(1.4) 14.56(1.4) 15.08(1.0) 15.2(0.8) 14.26(1.1)

Yeast 41.69(1.8) 41.82(2.1) 41.22(3.1) 43.2(3.6) 40.23(2.5)
glass 27.14(9.3) 29.52(9.2) 24.76(8.7) 24.0(6.8) 24.76(9.9)
wine 8.57(4.9) 9.16(5.3) 7.43(4.8) 7.54(5.3) 3.43(4.7)
vowel 5.96(2.9) 7.68(1.8) 6.25(2.3) 5.6(3.0) 5.66(1.9)

Table 6: Test error (and standard deviation) of multi-class boosting methods on UCI datasets, using
decision trees with a maximum depth of 12.

vector is created for each query-document pair (qi, dij), i = 1, · · · , n, j = 1, · · · ,m(qi) and is denoted as
g(dij |qi) = (g1 (dij |qi), · · · , gL(dij |qi)).

The objective of ranking is to construct a ranking function f such that for each query the retrieved
documents can be assigned ranking scores using the function and then be ranked according to the
scores. The learning process turns out to be that of optimizing the ranking measure which represents
the agreement between the permutation by relevance judgments and the ranking yielded by a ranking
function. We use the linear ranking function,

f(g(dij |qi)) = α · g(dij |qi)) (17)

where the weight vector α = (α1, α2, · · · , αL) is the model parameter. Assume the ranking measure is
NDCG. Since NDCG is non-convex, non-differentiable and discontinuous with respect to α, thus we
cannot use standard optimization algorithms such as gradient ascent to optimize directly.
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Figure 8: The top-τ (τ=3) candidates for each of the
two queries are marked as bold. Between each two bound-
aries, the NDCG value is shown. We can see the inter-
vals between p3 and p5 achieve the best NDCG.

DirectRank is an iterative coordinate ascent
method to directly optimize NDCG. For each it-
eration, there will be only one coordinate param-
eter updated, denoted as αk, while others keep
unchanged. The rationale of this idea is that the
ranking function is written as a one-dimensional
linear function,

f(g(dij |qi)) = αk · gk(dij |qi) +
L

∑

l 6=k

αlgl(dij |qi)

Since gk(dij |qi) is constant with respect to αk, and
so is the second term, we can re-write these two
quantities as bij and aij, and convert the equation
above to,

f(g(dij |qi)) = bij · αk + aij (18)

Note that for each document di,j retrieved by each
query qi, there is a linear function of αk. Given
an input of αk, each document will get an output
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score from this linear function. The order of such scores actually reflects the order of the documents
which further determines the NDCG value.

This is illustrated in Figure 8, where each of the lines represents a scoring function for a document.
At any point of αk, the rank of the linear function output scores is equivalent to the rank of the
documents. Note that a little change of αk cannot lead to a jump of NDCG value, unless it changes the
order of the top-τ documents. Such change in order happens only at the point where two lines intersect.
We denote the set of such points as jumping points. In Figure 8, we draw ten lines corresponding to ten
documents, which belong to two queries of the top-3 ranked documents. (p1, p2, · · · p12) are jumping
points.

Theoretically, we can search all the intersections to acquire all possible snapshots of ranked doc-
uments. Because any two of the non-parallel lines will form an intersection, the total number of
intersections then is m(qi)

2. When m(qi) is large, this effort is not only time-consuming but also com-
pletely unnecessary, because in real-world applications we are merely interested in the rank of top-τ
candidates, the NDCG metric is always truncated to a certain level τ , and usually τ ≤10. As a result,
the jumping point size between top-τ candidates is quite limited, and does not increase linearly as the
document size increases. Therefore, we can efficiently find all the jumping points on one coordinate and
find the interval which achieves the optimal NDCG value. Then we determine the optimal parameter
value by maximizing the likelihood of top-τ ranked documents for a ranking by human judgment within
these intervals.

The decision tree representation for the features of the query-document pair is capable of capturing
more complex relations between original features, and has been used by LambdaMart [22] to signif-
icantly improve the ranking performance over LambdaRank. Thus we integrate regression trees into
DirectRank effectively and conveniently by following a stage-wise strategy. We use MART trees [10] as
our weak learners, and in order to enhance the stability, we restrict the new weight αk in range [a, b],
where we empirically set the hyper-parameters between [0.1, 0.5] in our experiments. If the output is
beyond the range, we just take the border values.

1.4.1 Experimental Results

We have applied DirectRank to two large datasets, Yahoo Challenge Track 1 data and Microsoft 30K
web data. We achieved the best results. For example, for the Yahoo Challenge Track 1 dataset, since
we use a linear function in DirectRank, to have a fair comparison, we compare it with LambdaRank [3],
whose ranking function is also linear and has the best reported result. Table 7 shows that DirectRank
(DR) outperforms LambdaRank (LR). We also compare DirectRank with other baselines, such as
SmoothGrad (SG) [11], AdaRank (AR) [24], ad hoc coordinate ascent (CA) [13], RankBoost (RB) [8]
and ListNet (LN) [4]. Table 8 shows the running times for these methods. Given a randomly generated
starting point, DirectRank converges after approximately 20 rounds and takes a total time of 2.3 hours.
SmoothGrad is the fastest, however, it does not perform as well as DirectRank.

DR LR SG AR CA RB LN

train 0.762 – 0.741 0.728 0.750 0.734 0.709

valid 0.757 – 0.738 0.723 0.744 0.730 0.700

test 0.760 0.757 0.739 0.729 0.745 0.732 0.705

Table 7: NDCG@10 on Yahoo Challenge Track 1 dataset.

DR SG AR CA RB LN

Hours 2.3 0.3 11.8 45.3 24.5 23.8

Table 8: Running time on Yahoo Challenge Track 1 dataset.

As tree-based models generally outperform linear models, we compare our system with two state-
of-the-art systems, MART [10] and LambdaMART on two large datasets. The maximum number of
trees is set to 1000. In Yahoo data, the number of leaf nodes is set to 10, and more leaves do not
contribute to the final performance significantly with respect to the official measure NDCG@10. On
Microsoft 30K web data, we adjust the number of leaf nodes as 10, 30 and 50.
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@1 @10

MT .7084 .7768

LM .7167 .7791

DirectRank .7199 .7810

Table 9: NDCG scores of tree models on Yahoo Challenge,

including MART (MT), LambdaMART (LM).

@1 @10

MT LM DR MT LM DR

10 .4582 .4602 .4894 .4887 .4943 .4985
30 .4823 .4830 .4917 .4994 .4997 .5055
50 .4744 .4883 .4911 .5022 .5006 .5061

Table 10: NDCG score of tree models on Microsoft 30K

web data with varying number of leaf nodes, including

MART(MT), LambdaMART (LM), DirectRank (DR).

DirectRank shows significant superiority to NDCG@1 over Microsoft 30K web data, especially when
the number of leaf nodes is quite small, and in other cases (Table 9 and 10) DirectRank still performs
slightly better. We find the average number of documents per query is greatly different in the two
datasets, about 23 in Yahoo dataset and 72 in Microsoft data. Since MART treats all documents
equally, more documents may in some sense have a negative influence on the objective NDCG@1; thus,
it would be more likely to acquire improvement by adopting an accurate objective. When the number
of leaf nodes increases, the two baselines improve significantly in NDCG@1, while our DirectRank is
more stable and effective in performance. Moreover, even for a small number of leaf nodes, DirectRank
works very well. Finally, MART in [21] gets a higher performance by using a complete binary tree with
different depths, and all tree-based algorithms here are implemented in a fair manner by restricting
the maximum number of leaf nodes.

Please see [19] for more technical detail and experimental results.
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Appendix 1: Executive Summary of Lili Guo’s Master Thesis

The main challenge in learning-to-rank for information retrieval is the difficulty to directly optimize
ranking measures to automatically construct a ranking model from training data. It is mainly due to
the fact that the ranking measures are determined by the order of ranked documents rather than the
specific values of ranking model scores, thus they are non-convex, nondifferentiable and discontinuous.
To address this issue, listwise approaches have been proposed where loss functions are defined either
by exploiting a probabilistic model or by optimizing upper bounds or smoothed approximations of
ranking measures. Even though very promising results have been achieved, there is still a mismatch
between target cost and optimization cost. In this work, we present a novel learning algorithm that
directly optimizes the ranking measures without resorting to any upper bounds or approximations.
Our approach is essentially an iterative greedy coordinate descent method in optimization. For each
iteration, we only update one parameter along one coordinate with all others fixed. Since the ranking
measure is a stepwise function of a single parameter, we exploit an exhaustive line search algorithm to
locate the interval with the smallest ranking measure along each coordinate. We pick the coordinate
that leads to the largest reduction of ranking measure. In order to determine the optimal value of
the parameter for the selected coordinate, we construct a probabilistic framework for the permutation,
and maximize the likelihood of top-m ranked documents. This iterative procedure is continued until
convergence. We conduct experiments of five datasets selected from Microsoft LETOR datasets, our
experimental results show that the proposed direct rank algorithm outperforms several well-known
state-of-the-art ranking algorithms.
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